clice and Problem Solving

= Step-by-Step Solutions begin on page R12. Extra Practice begins on page 815,

Example 1 p. 580

Determine whether each sequence is arithmetic, geometric, or neither. Explain.

14. 4, 1, 2, ...

15. 10, 20, 30, 40, ...

16. 4, 20, 100, ...

17. 212, 106, 53, ...

18. −10, −8, −6, −4, ...

19. 5, -10, 20, 40, ...

Example 2 p. 581

Find the next three terms in each geometric sequence.

20. 2, -10, 50, ...

23. 400, 100, 25, ...

22. 4, 12, 36, ... **24.** -6, -42, -294, ... **25.** 1024, -128, 16, ...

Example 3 p. 582

26. The first term of a geometric series is 1 and the common ratio is 9. What is the 8th term of the sequence?

27. The first term of a geometric series is 2 and the common ratio is 4. What is the 14th term of the sequence?

28. What is the 15th term of the geometric series -9, 27, -81, ...?

29. What is the 10th term of the geometric series 6, -24, 96, ...?

Example 4 p. 582

30. PENDULUM The first swing of a pendulum is shown. On each swing after that, the arc length is 60% of the length of the previous swing. Draw a graph that represents the arc length after each swing.

31. Find the eighth term of a geometric sequence for which $a_3 = 81$ and r=3.

32. MAPS At an online mapping site, Mr. Mosley notices that when he clicks a spot on the map, the map zooms in on that spot. The magnification increases by 20% each time.

a. Write a formula for the *n*th term of the geometric sequence that represents the magnification of each zoom level. (Hint: The common ratio is not just 0.2.)

b. What is the fourth term of this sequence? What does it represent?

Lesson 9-8 Geometric Sequences as Exponential Functions

HOJI Problems

Use Higher-Order Thinking Skills

38. CHALLENGE Write a sequence that is both geometric and arithmetic. Explain your answer.

39. FIND THE ERROR Haro and Matthew are finding the ninth term of the geometric sequence -5, 10, -20, Is either of them correct? Explain your reasoning.

Havo

$$r = \frac{10}{-5} \text{ or } -2$$

$$a_q = -5 (-2)^q - 1$$

$$= -5(512)$$

$$= -2560$$

Matthew
$$r = \frac{10}{-5} \text{ or } -2$$

$$a_9 = -5 \cdot (-2)^{9-1}$$

$$= -5 \cdot -256$$

$$= 1280$$

40. REASONING Write a sequence of numbers that form a pattern but are neither arithmetic nor geometric. Explain the pattern.

41. OPEN ENDED Write a geometric sequence that has a common ratio of $\frac{3}{4}$.

12 WRITING IN MATH Summarize how to find a specific term of a geometric sequence.