## Geometry Unit 0 Review: Lesson 0-9 <br> Square Roots and Simplifying Radicals

Goal: Evaluate square roots and simplify radical expressions.
OAS: PA.N.1.5 and A1.N.1.1 and 1.2
Vocabulary:
Radicand: the expression INSIDE the radical sign
Radical: the radicand and the radical sign-sometimes known as a square root.
Radical Sign: $\sqrt{ }$
Product Property: If a and $\mathrm{b} \geq 0, \sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$
Quotient Property: If a and $b \geq 0, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
Conjugate: Binomials in the form of: $p \sqrt{x}+r \sqrt{t}$ and $p \sqrt{x}-r \sqrt{t}$

Radical expressions contain a radical, such as a square root. The expression under the radical sign is called a radicand. We will be simplifying radical expressions....to be simplified they have to meet three criteria:

1. No radicands have perfect squares factors other than 1.
2. No radicands contain fractions.
3. No radicals appear in the denominator.

## Product property of square roots:

For any non-negative real numbers a and $b$, the square root of $a b$ is equal to the square root of a times the square root of $b . \quad \sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$ Ex) $\sqrt{36}=\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}=2 \cdot 3=6$

## Simplify Square Roots:

Ex) Simplify $\sqrt{80}$
Step 1: Look for perfect squares in 80. You can do this by math fact knowledge, or you can use prime factorization.

$$
\text { Ex) } \begin{aligned}
& \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 5} \\
& \\
& \sqrt{4} \cdot \sqrt{4} \cdot \sqrt{5} \\
& \hline
\end{aligned}
$$

Step 2: Simplify perfect squares and leave imperfect squares as radicands.

```
Ex) Simplify }\sqrt{}{80
\[
\frac{\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 5}}{\frac{\sqrt{4} \cdot \sqrt{4} \cdot \sqrt{5}}{\sqrt{4} \cdot \quad \sqrt{4} \cdot \sqrt{5}=2 \cdot 2 \cdot \sqrt{5}=4 \sqrt{5}}}
\]
```


## Multiplying with Square Roots

To multiply square roots, radicands do NOT have to be the same.
Ex) Multiply: $\sqrt{2} \cdot \sqrt{14}$
Step 1: Multiply together: $\sqrt{2} \cdot \sqrt{14}=\sqrt{28}$
Step 2: Factor out perfect squares: $\sqrt{2 \cdot 2 \cdot 7}=2 \sqrt{7}$
Step 3: check to make sure you have completely factored out all the perfect squares.

Ex) Multiply: $3 \sqrt{2} \cdot 2 \sqrt{6}$
Step 1: Use Associative property to group the coefficients and the radicals $(3 \cdot 2)(\sqrt{2} \cdot \sqrt{6})$

Step 2: Multiply together: $6 \sqrt{12}$
Step 3: Factor out perfect squares: $6 \sqrt{2 \cdot 2 \cdot 3}=6 \cdot 2 \sqrt{3}$
Step 4: Multiply all coefficients: $12 \sqrt{3}$

## Rationalizing the denominator:

Quotient property of Square roots: For any real numbers a and b, where a $\geq 0$ and $\mathrm{b} \geq 0$, the square root of $\frac{a}{b}$ is equal to the square root of a divided by the square root of b .

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

## Ex) Simplify $\sqrt{\frac{35}{15}}$

Remember that we cannot have a radical in the denominator and we cannot have a fraction as a radicand. The square root of 15 is not a perfect square, so we need to simplify this.

Step 1: Simplify the fraction: $\sqrt{\frac{35}{15}}=\sqrt{\frac{7}{3}}$
Step 2: Use the quotient property of square roots: $\sqrt{\frac{7}{3}}=\frac{\sqrt{7}}{\sqrt{3}}$
Step 3: To get the radical out of the denominator, we use the fraction rule for making equivalent fractions that "whatever I do to the bottom I do to the top"

$$
\frac{\sqrt{7}}{\sqrt{3}} \frac{\sqrt{3}}{\cdot \sqrt{3}}=\frac{\sqrt{21}}{\sqrt{9}}
$$

Step 4: Simplify any square roots that you can simplify. $\frac{\sqrt{21}}{\sqrt{9}}=\frac{\sqrt{21}}{3} \quad(\sqrt{21}=$ $\sqrt{3 \cdot 7}$ does not simplify)

Step 5: Simplify your fraction if you can (coefficients here are $\frac{1}{3}$ which doesn't simplify)

## Using Conjugates to simplify radicals

As we have previously learned in Alg. 1—differences of squares look very much like our conjugates: $(p \sqrt{x})^{2}-(r \sqrt{t})^{2}=(p \sqrt{x}+r \sqrt{t})(p \sqrt{x}-r \sqrt{t})$. We will use this idea to create a square that then we can add a square root to and eliminate some radicals.

Ex) Simplify $\frac{4}{5-2 \sqrt{3}}$
Step 1: Use a conjugate to eliminate radicals in the denominator.

> Ex) $\frac{4}{5-2 \sqrt{3}} \cdot \frac{5+2 \sqrt{3}}{5+2 \sqrt{3}} \quad$ We know that anything over itself $=1$, so we are essentially just multiplying by one here, which won't change the problem's value.

Step 2: We know that $(a-b)(a+b)=a^{2}-b^{2}$. We use this rule to simplify the radical.

Ex) $\frac{4}{5-2 \sqrt{3}} \cdot \frac{5+2 \sqrt{3}}{5+2 \sqrt{3}}=\frac{4(5+2 \sqrt{3})}{5^{2}-(2 \sqrt{3})^{2}}$

Step 3: Simplify by using distributive property and product property of square roots.

$$
\text { Ex) } \frac{4(5+2 \sqrt{3})}{5^{2}-\left(2 \sqrt{3)}^{2}\right.}=\frac{20+8 \sqrt{3}}{25-4(3)}=\frac{20+8 \sqrt{3}}{13}
$$

Step 4: Check to make sure you don't have any fractions that will simplify. In this example there aren't any.

