Geometry Unit 2: Lesson 2-6 Algebraic Proofs

Goals: --Use algebra to write two column proofs

--Use properties of equality to write geometric proofs.

OAS: G.RL.1.1 Understand the use of undefined terms, definitions, postulates, and theorems in logical arguments/proofs.

Vocabulary:

Algebraic Proof: A proof made up of a period of algebraic statements. The properties of equality provide many justifications for algebraic proofs. **Two –Column Proof:** A proof with statements and reasons organized into two columns.

Formal Proof: Another name for a two-column proof.

Algebraic Proofs

<u>Algebraic Proofs</u> are proofs that make up a series of algebraic statements. Properties of real numbers we use in algebra:

Key Concept Properties of Real Numbers For Your FOLDABLE FOLDABLE		
The following properties are true for any real numbers <i>a</i> , <i>b</i> , and <i>c</i> .		
Addition Property of Equality	If $a = b$, then $a + c = b + c$.	
Subtraction Property of Equality	If $a = b$, then $a - c = b - c$.	
Multiplication Property of Equality	If $a = b$, then $a \cdot c = b \cdot c$.	
Division Property of Equality	If $a = b$ and $c \neq 0$, then, $\frac{a}{c} = \frac{b}{c}$.	
Reflexive Property of Equality	a = a	
Symmetric Property of Equality	If $a = b$, then $b = a$.	
Transitive Property of Equality	If $a = b$ and $b = c$, then $a = c$.	
Substitution Property of Equality	If $a = b$, then a may be replaced by b in any equation or expression.	
Distributive Property	a(b+c) = ab + ac	

```
Commutative Property
of Addition
a + b = b + a
Commutative Property
of Multiplication
a \cdot b = b \cdot a
Associative Property
of Addition
(a + b) + c = a + (b + c)
Associative Property
of Multiplication
(a \cdot b) \cdot c = a \cdot (b \cdot c)
```

Ex) Prove that if -5(x + 4) = 70, then x = -18. Write a justification for each step using a two-column proof.

-5(x+4) = 70	Given
$-5 \cdot x + (-5) \cdot 4 = 70$	Distributive property
-5x - 20 = 70	Substitution Property of Equality
-5x - 20 + 20 = 70 + 20	Addition Property of Equality
-5x = 90	Substitution Property of Equality
$\frac{-5x}{-5} = \frac{90}{-5}$	Division Property of Equality
x = -18	Substitution Property of Equality

Geometric Proof

Geometric proofs are very similar to algebraic proofs. Many of the properties of equality used in algebra are also true in geometry.

Some other geometric relationships are:

Property	Segments	Angles
Reflexive	AB = AB	$m \angle 1 = m \angle 1$
Symmetric	If $AB = CD$, then $CD = AB$.	If $m \angle 1 = m \angle 2$, then $m \angle 2 = m \angle 1$.
Transitive	If $AB = CD$ and $CD = EF$, then $AB = EF$.	If $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 3$, then $m \angle 1 = m \angle 3$.

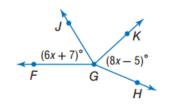
Example 3 Write a Geometric Proof

If $\angle FGJ \cong \angle JGK$ and $\angle JGK \cong \angle KGH$, then x = 6. Write a two-column proof to verify this conjecture.

Given: $\angle FGJ \cong \angle JGK, \angle JGK \cong \angle KGH,$ $m \angle FGJ = 6x + 7, m \angle KGH = 8x - 5$

Prove: x = 6

Proof:



Statements	Reasons
1. $\angle FGJ \cong \angle JGK; \angle JGK \cong \angle KGH$	1. Given
2. $m \angle FGJ = m \angle JGK; m \angle JGK = m \angle KGH$	2. Definition of congruent angles
3. $m \angle FGJ = m \angle KGH$	3. Transitive Property of Equality
4. $6x + 7 = 8x - 5$	4. Substitution Property of Equality
5. $6x + 7 + 5 = 8x - 5 + 5$	5. Addition Property of Equality
6. $6x + 12 = 8x$	6. Substitution Property of Equality
7. $6x + 12 - 6x = 8x - 6x$	7. Subtraction Property of Equality
8. $12 = 2x$	8. Substitution Property of Equality
9. $\frac{12}{2} = \frac{2x}{2}$	9. Division Property of Equality
10. $6 = x$	10. Substitution Property of Equality
11. $x = 6$	11. Symmetric Property of Equality

PT