Geometry Unit 2: Lesson 2-7 Proving Segment Relationships

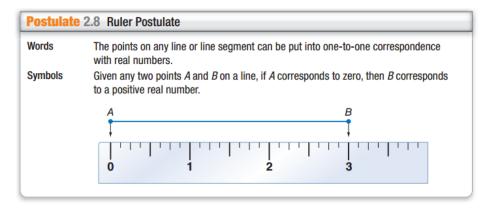
Goals: --Write proofs involving segment addition.

--Write proofs involving segment congruence.

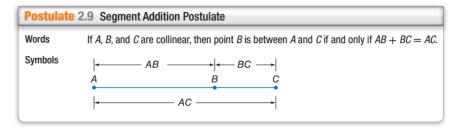
OAS: G.RL.1.1 Understand the use of undefined terms, definitions, postulates, and theorems in logical arguments/proofs.

Vocabulary (none)

Ruler Postulate:



Segment Addition Postulate:



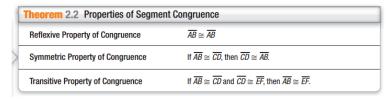
Use the segment addition postulate

Example 1 Use the Segment Addition Postulate Prove that if $\overline{CE} \cong \overline{FE}$ and $\overline{ED} \cong \overline{EG}$ then $\overline{CD} \cong \overline{FG}$. Given: $\overline{CE} \cong \overline{FE}$; $\overline{ED} \cong \overline{EG}$ Prove: $\overline{CD} \cong \overline{FG}$ Proof:

$\overline{CE} \cong \overline{FE} \text{ and } \overline{ED} \cong \overline{EG}$	Given
CE = FE and ED = EG	Definition of Congruence
CE + ED = CD	Segment Addition Postulate
FE + EG = CD	Substitution (from steps 2 and 3)
FE + EG = FG	Segment Addition Postulate
CD = FG	Substitution (from steps 4 and 5)
$\overline{CD} \cong \overline{FG}$	Definition of congruence

^{**}Sometimes if you have trouble, you can work backwards if it helps.

Segment Congruence



similar to:

Property	Segments	Angles
Reflexive	AB = AB	<i>m</i> ∠1 = <i>m</i> ∠1
Symmetric	If $AB = CD$, then $CD = AB$.	If $m \angle 1 = m \angle 2$, then $m \angle 2 = m \angle 1$.
Transitive	If $AB = CD$ and $CD = EF$, then $AB = EF$.	If $m\angle 1 = m\angle 2$ and $m\angle 2 = m\angle 3$, then $m\angle 1 = m\angle 3$.

Proof Transitive Property of CongruenceGiven: $\overline{AB} \cong \overline{CD}$, $\overline{CD} \cong \overline{EF}$ $\overline{BB} \cong \overline{CD}$, $\overline{CD} \cong \overline{EF}$ Prove: $\overline{AB} \cong \overline{EF}$ $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, $\overline{AB} = \overline{CD}$ and $\overline{CD} = \overline{EF}$ by the definition of congruent segments. By the Transitive Property of Equality, $\overline{AB} = \overline{EF}$. Thus, $\overline{AB} \cong \overline{EF}$ by the definition of congruence.